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ABSTRACT 
Magnetoelectric (ME) composites can be produced by embedding magnetostrictive H particles in a 

piezoelectric E matrix derived from a piezoelectric powder precursor.  Previously, using a bi-disperse 

hard shell model [1], it has been shown that the electrical percolation threshold of the conductive H phase 

can be increased by decreasing the piezoelectric E particle size, relative to the H phase particle size, and 

by increasing short range affinity between the E and H particles.  This study builds on our previous study 

by exploring what happens during sintering of the ME composite when either the H or E particles 

undergo deformation.  It was found that deformation of the H particles reduces the percolation threshold, 

and that deformation of E particles increases interphase H-E mechanical coupling, thus contributing to 

enhance ME coupling. 
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1. Introduction and Objectives 
Magnetostriction is a property of ferromagnetic materials that causes them to deform with strain when 

exposed to a magnetic field.   The piezoelectric effect is the ability to generate electrical potential in 

response to an applied mechanical strain [2–7].  Magnetoelectric (ME) composites combine 

magnetostrictive H and piezoelectric E materials into a composite that can convert a magnetic field into 

an electric field or vise-versa with improved efficiency and sensitivity [6–8].  Previous work [2,3] 

describe how to maximize the ME effect as a function of H concentration, i.e. piezomagnetic volume 

fraction (p=VH/(VH+VE)), where VH, VE are the volume of the H and E phases respectively. 
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Fig. 1.  Magnetoelectric coupling as a function of the relative amount of magnetostrictive material 

shows an optimal concentration for maximum ME coupling. 

 

As illustrated in Fig. 1, the magnetoelectric coupling (ME), which measures the efficiency of energy 

conversion from magnetic to electric media, increases with the piezomagnetic (PM or H) volume fraction 

content.  However, the H phase is electrically conductive and its volume fraction is limited by electrical 

percolation because electrical conductivity diminishes the ME effect.  Furthermore, sintering deforms the 

H particle shape, with deformation having a deleterious effect on the electrical percolation threshold (ρc), 

and particles attaining the maximum percolation threshold when they are spherical.  As per Fig. 1, one 

wishes to maximize the percolation threshold so that a larger volume of H phase can be used in order to 

maximize ME coupling.  

Sintering is a process by which powders are densified to remove interstitial space so that the packing 

fraction approaches one and bonds are formed between precursor particles.  Sintering is done at 

temperatures generally below the composite melting temperature [9,10].   Numerical techniques have 

been employed to study the sintering of close packed spheres [11], and numerous experimental studies 

have been conducted to investigate the sintering of magnetostrictive and piezoelectric ceramic composites  

[12–14], which report the use of conventional ceramic processes by applying pressure with a chemical 

binder that promotes bonding to produce a pellet followed by applying heat below the precursor’s melting 
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temperature but sufficient to evaporate the binder.  Another method reported for sintering ceramics is 

electric current assisted sintering (ECAS), where powders are inserted into a container that is heated by 

applying electric current through the powders while pressure is applied at a fixed temperature for a given 

period of time [15].  In yet another method, magnetoelectric PZT-CFO is produced via a chemically 

driven ethlenediaminetetraacetic acid (EDTA)-citrate gel process [16].  In all cases, deformation of the 

constituent particles occurs as a result of pressure and high temperatures or the transport of matter by 

viscous flow, evaporation, or atomic volume and surface migration [10,17,18].  Consequently, any 

process considering electrical conduction among particles in a composite must consider the relative shape 

of those particles, which may form a conductive chain in the composite manufacturing process.  

Aiming to exploit the as of yet unrealized ME optimization per Fig. 1 [2,3], and using a hard shell 

model, [1] explored the relationships between particle size, inter-phase affinity and particle attraction, and 

the electrical percolation threshold [19,20] in the electrical conducting magnetostrictive (H phase) when 

mixed with the nonconductive piezoelectric (E phase) for the purpose of maximizing the magnetoelectric 

(ME) effect.  Barbero and Bedard [1] concluded that the electrical percolation threshold increases when 

size of the E piezoelectric particles is reduced, and also when short range attractive or adhesive quality is 

introduced between the H and E phases.  However, these results [1] were predicated on the assumption 

that neither the H nor E particles deformed from their idealized state of hard solid spheres but either or 

both H and E particles may deform during sintering.  Therefore, the objective of this study is to address 

the effect of particle deformation on the electrical percolation threshold of the H phase.  Furthermore, it is 

also the objective of this study to investigate, through simulation, the likely effect of particle deformation 

on mechanical contact between both phases, which is needed to effectively transfer the strains from the 

piezomagnetic H phase to the piezoelectric E phase, which is crucial for achieving a high performance 

device [21]. 
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2.  Methodology 
To simulate mesoscale (100 nm) particle interactions particle dynamics is performed using Large 

Scale Atomic and Molecular Massively Parallel Simulation LAMMPS software [22].  All interactions 

between particles are modeled with the well-known Lennard-Jones potential, and all results are expressed 

in Lennard-Jones natural units of ε and σ for energy and distance respectively.   

2.1 Simulation Specifications 
The simulation box initially contains 8000 spherical particles each a diameter of 1.12246σ.  A 

fraction p=NH/(NH+NE) of the particles are coded H for magnetostrictive while the rest a coded E for 

piezoelectric, where N denotes number of particles.  Per [1], initially the hard-shell simulation contains 

only particle modeled as spheres and is run in three stages to allow the particles to be mixed, but also 

rendered at a final packing fraction f = 0.64, which is the density at which random close packed particles 

jam or undergo a glass transition [23–25].  The first stage is the mixing (MIX) stage where particles are 

mixed at a low packing fraction of f = 0.5236 corresponding to the crystalline simple cubic lattice to 

allow sufficient space for complete mixing.  In the second stage, referred to as equilibration (EQU), the 

particle size is scaled up (by increasing σ in the Lennard-Jones potential) to increase the packing fraction 

to an intermediate value where the particles are allowed to equilibrate and relax the potential energy that 

increased as a result of the increased particle size [1].  In the third or gelation (GEL) stage, the particles 

are again grown so that the packing fraction reaches the jamming [23] or glass transition [24,25] value of 

f = 0.64.   

After the three stages MIX, EQU, and GEL are completed, the H particles are replaced with 

deformable cubes with each cube containing 125 smaller spheres (Fig. 3), and where each smaller sphere 

is modeled with a Lennard-Jones sigma value of 1.22246/5 or 0.22492σ.  See Appendix C regarding 

LAMMPS© input scripts for details. Post processing calculations for computing the coordination 

numbers (c.n.) and radii of gyration (Rg) are performed with programs written in PERL and C per 

Appendices A and B. The algorithms dist9M.c and zapM.c are developed and used to measure 

percolation between deformed H clusters. The same recursive algorithm referred to as zap2.c, previously 
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used to measure hard-sphere percolation in [1] is here modified to compute the smallest distance between 

all possible contact points between clusters.  See Appendices for details.   

 

3. Two Dimensional Particles Dynamics 
Although this study involves full three dimensional simulation, the results of two dimensional 

simulations are easier to visualize, thus two dimensional simulations are initially performed to see if 

particle clusters diffuse around larger spherical particles in a way that mimics particle deformation that 

occurs during actual sintering.  Fig. 2 illustrates that H clusters deform and diffuse in a way supporting 

the goals of this study, which is to explore the effect of sintering on the percolation threshold and inter-

phase mechanical contact [1].   In Fig. 2, it can be seen that after some time, the colored circles (H phase 

clusters) deform and fill the interstitial spaces between the hard blue spheres (E phase).  This is 

accomplished by slowly growing all particles in both phases in small discrete steps at the same rate until 

the interstitial spaces are filled and the packing fraction (f=VH+VE/Vbox) approaches one, which is a 

primary objective of the sintering process.  VH, VE, and Vbox refer to the volume of the H phase, E phase, 

and simulation box respectively. 

            

Fig. 2.  2D simulation with H-clusters deforming around undeformable spherical E-particles 

 

4. Three Dimensional Particle Dynamics 
This study involves two parts.  The first part is to simulate the mixing of magnetostrictive H and 

piezoelectric E powders where the H clusters are modeled as small cubes, each composed of 125 small 

spheres per cube (Fig. 3).  Each small sphere in a H cluster is modeled using the Lennard-Jones “6-12” 
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potential. All E particles are also modeled as hard-shell spheres using the Lennard-Jones “6-12” potential 

with modeling parameters adjusted to reflect larger size and interaction energy well depth.   The particles 

within each cube are allowed to move for a short time (Section 4.1) until the spheres are in a random 

configuration but still close enough to each other to constitute a cluster as shown in Fig. 4.  Once the 

dense but random configuration of small spheres as shown in Fig. 4 is achieved, the motion is stopped 

(Sect. 4.1), and the collection of smaller spheres, referred to as clusters are regarded as equivalent to a 

continuous matter distribution of equal proportions (Fig. 5). 

 

                              
Fig. 3.  Left: Hard-sphere result from [1] state GEL, No affinity (Noa). Right: All H-phase red spheres on 

left replaced with 125 point cluster cubes. 

 

 



Antoine Joseph Bedard Jr. and Ever J. Barbero. Electrical percolation threshold of magnetostrictive 
inclusions in a piezoelectric matrix under simulated sintering conditions. Computational Particle 
Mechanics (2018) 5:593-605. DOI: 10.1007/s40571-018-0192-9 

 

Page 7 of 29 

 

 

Fig. 4.  H clusters deform and diffuse to fill the interstitial space between E phase spheres. 

 

Fig. 5.  Continuum of matter is replaced by 125 discrete particles in a cluster. 

4.1 Stopping Time 
During actual sintering, particle shape changes due to diffusion and surface migration, and this 

change stops when the local gradient of the chemical potential between diffusing species becomes 

exhausted [9,10,26].  In addition, in actual sintering, mass transport involving phase change mostly occurs 

over small distances relative to particle size in a compacted powder mix [9], so we restrict particle 

migration to local movement only.  However, in the present simulation and taking into account that the 

Lennard-Jones potential represents a frictionless elastic potential, mass transport would never stop unless 

a dampening or a reduction in temperature are introduced.  Therefore, in this study, to avoid excessive 
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mass transport, an end-of-simulation condition is chosen to restrict the amount of medium and long range 

matter transport to under approximately 25% of all matter in any given cluster. 

In order for the clusters to simulate a continuous mass, the spheres in each cluster must be relatively 

close to each other.  If any sphere in a cluster exceeds a distance greater than 2×Rg (Rg = Radius of 

Gyration, see Section 5.2) from that cluster’s center of mass (Fig. 6), then those small spheres are not 

counted as part of the continuous distribution for the purposes of computing percolation, but are still used 

to compute the coordination number c.n. (Section 5.3).  It can be seen in Table 3 that on the average the 

percent of small spheres outside 2×Rg are less than 25% for a simulation time of 3800 time steps, with an 

iterative time step coded into LAMMPS [22] of Δt=0.0002. 

 

 

Fig. 6.  Particles at a distance greater than 2×Rg from cluster center of mass excluded from electrical 

percolation calculations. 

 

4.2 Range Calculations 
A key parameter needed to compute both the intra-phase H-H percolation and the H-H or H-E 

coordination numbers is the maximum range Rm (in distance units of σ) allowed between the centers of 

two particles such that the particles are considered connected.  There are three distinct situations for 

calculating range.  The first (Fig. 7a) is the electrical contact distance between H hard-shell spheres given 

by equation (1) where D is the diameter of H phase sphere=1.12246σ, SF is scaling factor=(f/0.5236) 1/3 

(Section 4.2.1) and QT is factor to account quantum tunneling=(1+5/100)=1.05 per section 4.2.2.           
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Quantum tunneling is based upon particle size and is scaled to 100 nm corresponding to 5nm 

electrical quantum tunneling distance [27–29].  Quantum tunneling considers the effect that classically 

isolated conducting particles may still be electronically connected due to the wave nature of charge 

carriers [28,29]. The scaling factor (SF) is a factor applied to sigma (σ) in the Lennard-Jones inter-particle 

potential to maintain the packing fraction at the random close packed critical values of f=0.64,0.675,0.73, 

0.755, which are the particle densities above which jamming or glass transition occurs and motion 

becomes arrested for RH/RE = 1,2,3,4 respectively [30,31] (Section 4.2.1).   

The second range (Fig. 7b) computed via equation (2) is the mechanical contact between any small 

spheres in an H cluster and a nearby E particle.  For this mechanical contact range, no quantum tunneling 

is involved and the distance between the particles centers is 3/5 the diameter of an E particle.   

The third range is given by equation (3) and is the electrical contact distance between deformed H-

clusters.  In this third case the distance between the effective surfaces of two H clusters is D×QT-D (Fig. 

7c), and the additional distance between the centers of 2 smaller spheres within each cluster is D/5.  Thus,  

the total effective electrical distance is SF×[D×QT-D + D/5] scaled up, where quantum tunneling (QT) is 

the additional distance an electrical signal may travel between classically isolated conducting particles 

[1], and the scaling factor (SF) is applied to all particles both E and H to maintain the packing fraction at 

f=0.64 in the case where RH/RE=1.  Table 1 displays the range calculations used in this study per 

equations 1-3. 

4.2.1 Derivation of scaling factor SF 

Particles are sized to allow a packing fraction f that allows adequate room for mixing below glass 

transition or jamming, i.e. motion restriction [23,24].  After mixing, all particles are scaled up in size to 

rescale the simulation to the packing fraction below which we hypothesis adequate sintering would not 

occur efficiently because the particles would not be compacted.  Let r1 be the particle radius before 

scaling and r2 be the particle radius after scaling.  For equally sized particles (RH/RE=1), to increase the 

packing fraction to f =0 .64 for a fixed box volume Vbox, r1 must be increased such that (4/3) π (r2)3 / (4/3) 
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π (r1)3 = 0.64/0.5236.  This means that r2 = (0.64/0.5236)1/3 × r1 = SF×r1.  Therefore, the scaling factor 

(SF) for RH/RE=1 is calculated as SF= (0.64/0.5236)1/3 = 1.069203.  In general for all SF values listed in 

Table 1, SF = (f/0.5236)1/3 where f is the associated packing fraction for that particles size. 

4.2.2 Quantum tunneling 

Quantum tunneling is an effect whereby electric charge can jump a space between conductive but 

electrically isolated particles that is forbidden by classical mechanics [28].    Quantum tunneling is 

reported to range from 3 nm [28] to 10 nm [32] between conducting particles in a non-conducting matrix.  

Per [1], if two conducting particles are at most 5 nm or closer, then there is a high likelihood of quantum 

tunneling between the two conducting particles of diameter 100 nm, so when the H particle diameter 

D=100 nm, the conductivity distance used to evaluate percolation between particles centers is increased 

by a factor of  (100 + 5/100) = 1.05.  

 

                      

(a)  H-H electrical   (b)  H-E mechanical  (c) H-H cluster electrical 

Equation (1)   Equation (2)   Equation (3) 

Fig. 7.  Illustrations for range calculations given by equations 1-3. 

 

𝑅𝑚 = 𝐷 × 𝐺𝐹 × 𝑄𝑇  (1) 

 

𝑅𝑚 = 3 ×
𝐷

5
× 𝐺𝐹    (2) 

 

𝑅𝑚 = 𝐺𝐹 × (𝐷 × 𝑄𝑇 − 𝐷 +
𝐷

5
) = 𝐺𝐹 ×

𝐷

4
    (3) 
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Table 1.  Range calculations per equations 1-3 and RH/RE= 1-4, f = packing fraction (sect. 5.1), SF = 

scaling factor (sect. 4.2.1), QT = quantum tunneling (sect. 4.2.2), Rm = range (sect. 4.2, equations 1-3) 

parameter f SF QT Rm 

c.n.H-H (RH/RE=1) 0.64 1.0692 1.05 1.26 

c.n.H-E (RH/RE=1) 0.64 1.0692 1 1.2 

c.n.H-E(RH/RE=2) 0.675 1.08835 1 0.92 

c.n.H-E(RH/RE=3) 0.73 1.11714 1 0.84 

c.n.H-E(RH/RE=4) 0.755 1.12975 1 0.79 

c.n.H-E (cluster) 0.64 1.0692 1 0.72 

c.n.H-H (cluster) 0.64 1.0692 1.05 0.25 

perc. dist. ρc (RH/RE=1)  0.64 1.0692 1.05 1.26 

perc. dist. ρc (RH/RE=2) 0.675 1.08835 1.05 1.28 

perc. dist. ρc (RH/RE=3) 0.73 1.11714 1.05 1.32 

perc. dist. ρc (RH/RE=4) 0.755 1.12975 1.05 1.33 

perc. dist. ρc (clusters) 0.64 1.0692 1.05 0.3 

 

4.3 Process and Thermodynamics 
All simulations of deformable phases in this study begin with H and E particles located in space as 

per configuration in the GEL stage of hard-shell simulations performed in [1].  One such initial 

configuration of H and E particles is shown on the left of Fig. 3.  Next, the H hard spheres are replaced 

with cubical clusters each containing 125 smaller Lennard-Jones spheres.  

It was found initially that replacing spheres with deformable cubes at the locations occupied by the 

precursor hard-shell H spheres resulted in simulation failure because portions of the cubes invaded the E 

hard-shell boundaries, causing excessive potential energy above the legal bounds for the LAMMPS  

simulation software  [22].  To solve this problem, the small spheres making up the deformable cubes were 

reduced in size until the cubes have time to deform into appropriate spherical clusters.  The small spheres 

were then allowed to equilibrate for a short period of time, and then they were slightly scaled up in size 

by increasing the Lennard-Jones distance parameter σ and adjusting the energy parameter ε.  The system 

was then allowed to equilibrate.  This process of sudden but incremental scaling followed by short time 

equilibration was repeated until all particles were at the required size to restore the packing fraction (f = 

VE+VH/Vbox) and volume ratio p=VH/(VE+VH) to the same values they had before the H particles were 

replaced with deformable cubes, where VH and VE equal the total volume taken up by the H and E phases 

respectively [1].  An example of the thermodynamics that occurs during the simulation of sintering is 
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shown in Fig. 8.   The potential energy (PE) appears discontinuous because at each discontinuity, the size 

of all particles both H and E are increased suddenly.   This increase in PE causes a corresponding 

increase in kinetic energy (KE) as shown Fig. 8.   

 

  

      Fig. 8.  “×” is Kinetic Energy    “+” is Potential Energy 

5. Characterizations and Measurement 
The techniques used for characterization and measurement are described in this section. 

5.1 Packing fraction 
The packing fraction is the volume of all solid matter relative to the volume of the simulation box and 

is defined per equation (4). 

𝑓 =
𝑉𝐸+𝑉𝐻

𝑉𝑏𝑜𝑥
      (4) 

The volume ratio is defined per equation (5). 

𝜌 =
𝑉𝐻

𝑉𝑏𝑜𝑥
= 𝑓 × 𝑝    (5) 

The volume fraction is defined per equation (6). 

𝑝 =
𝑉𝐻

𝑉𝐻+𝑉𝐸
      (6) 
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5.2 Radius of Gyration 
The radius of Gyration (Rg) is the distance representing the effective angular momentum of a 

distribution of point masses about the distribution’s center of mass given by equation (7) [33] 

𝑅𝑔 = √
1

𝑛
∑ (𝑟𝑖 − 𝑟𝑐𝑚)2𝑛

𝑖=1      (7) 

In this study, the radius of gyration is used to represent the three dimensional shape and deformation 

of the clusters.  By way of comparison, the radius of gyration of H and E spheres with diameter 

2×R=1.12246σ is Rg=0.775×R=0.435σ, where σ is the Lennard-Jones natural unit of distance, and the Rg 

of a perfect sphere of this same radius is 0.775×0.56123 = 0.435σ.  A cylinder of radius R and equal 

volume to an E or H sphere has a radius of gyration such that (Rg)2 = R2 /2 + (4/3R)2 /12, so that 

Rg=0.452σ.  It can be seen that the Rg of a cylinder is larger than the Rg of a sphere of the same volume.  

Thus, Rg provides an indication of a cluster’s deformation during sintering. 

5.3 Coordination Number  
The coordination number (c.n.) [34–38] is the average number of contacts with other particles any 

given particles has.  In crystallography [35], the lattice structure of a simple cubic lattice has a c.n. = 6, a 

body centered cubic lattice has a c.n. = 8, and the hexagonal closest packed has c.n. = 12.   In this study, 

we define two types of coordination numbers.  The first, CNHH (left Fig. 9), is the number of contacts the 

average H particle make with other H particles, which is important for electrical conduction.  The other 

type of coordination number, labeled CNHE (right Fig. 9), is the number of contacts the average H 

particle makes with other E particles, which is important for mechanical contact and deformation transfer 

between phases. 

 

Fig. 9.  Illustration for coordination numbers intra-phase CNHH (left), and inter-phase CNHE (right) 
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Per Fig. 9, CNHH characterizes the percolation paths an electrical signal could follow.  Thus the 

higher the CNHH, the more likely the percolation threshold (ρc) is to decrease.  CNHE characterizes the 

mechanical contact between the H and E phases, which is proportionate to the efficiency of energy 

transfer between the H and E phases. All small spheres belonging to a particular cluster may participate in 

the calculation for either coordination number regardless of distanced from center of mass.  The average 

c.n. for random close packed configurations of perfect spheres of equal size is reported to be 

approximately six [34,37].  Higher CNHH and CNHE values provide an indication of a lower percolation 

threshold or higher ME electromechanical contact, respectively. 

6. Results 

6.1 Deformation of H Phase around Rigid E Phase 
This section addresses what happens when the H particles deform around rigid E particles.  In Table 

2, “RU” in the left most column stands for the initial configuration of particles used in this study taken 

from after the GEL stage completed in [1].  “Noa” stands for “No affinity” between any particles used to 

compute the initial configuration under GEL conditions per [1].  “Adh” stands for “Affinity” between H 

and E phase particles used to compute the initial configuration under GEL conditions per [1].  “ρc” 

represents the critical or smallest volume ratio, ρ=VH/(Vbox) where electrical H-H percolation occurs.  VH 

is the volume of the H phase and Vbox is the total volume of the simulation box for this study which is 

(20×1.12246σ)3.  Rg is the radius of gyration in Lennard-Jones units of sigma σ.   

Furthermore in Tables 2 and 3, “Bonds” stands for the number of bonds between deformed H 

particles found during percolation.   “CNHH” stands for the coordination number of all H particles with 

respect to other H particles when all particles are modeled as hard-shell spheres with RH/RE=1 that is data 

from [1].  CNHE1 through CNHE4 stands for the coordination number of all H particles with respect to 

surrounding E particles for RH/RE = 1,2,3,4 respectively.   We see in Table 2 that the sum of CNHH and 

CNHE1 is approximately six which corresponds to the average coordination number of random close 

packed spheres of equal size [34,36,37].  Also in Table 2, it can also be seen that for the no inter-particle 

(Noa) cases, the inter-phase H-H coordination CNHH tracks in direct proportion with the percolation 
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threshold ρc.  That is, as the H-H c.n. goes up or down, so does the H-H electrical percolation threshold.  

Also, it can be seen that the inter-phase particle coordination numbers CNHE1 to CNHE4 increase 

sharply with increasing difference in particle size RH/RE = 1 to 4.  See Fig. 13 for additional information 

regarding this trend. 

 

 

Table 2.  Characterization of hard-shell spheres simulation  

 

 

The effects of H particle deformation are reported in Table 3.  “A00/#” stands for no affinity between 

any particles, and “A12/#” stands for affinity between the H and E phase during the additional 3800 time 

steps used to model particle deformation, but no H-H or E-E affinities, where # stands for run number.  

All runs were repeated three times.   The term “%strys” stands for the percent of small spheres per cluster 

that have drifted away more than 2×Rg from the center of mass of a given cluster.  “CNHH-M” stands for 

the average coordination number of all H clusters with respect to other H clusters.  “CNHE-M” stands for 

the average coordination number of all H clusters with respect to all neighboring E particles. 
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Table 3.  Characterization of deformable H-clusters in simulation 

 

 

It can be seen in Table 3 that the percolation threshold based on “H-E particle affinity (Adh)” initial 

conditions (Table 3, bottom half) is higher than percolation threshold derived from “no affinity (NOA)” 

initial conditions.  This reinforces the conclusion that H-E particle affinity increases the H-H percolation 
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threshold regardless of H particle deformation.  It may be seen that both the CNHH-M and CNHE-M 

values have a relatively low spread about their average values, and that the “A00” (No particle affinity 

during deformation) coordination numbers are close to the “A12” (H-E affinity during sintering) 

coordination numbers, while the Rg values are almost the same in all cases.   This indicates that when 

particle deformation is used as the stopping condition (section 3.1), the percolation threshold is relatively 

independent of how the particles reached their final geometrical state, i.e. particle clusters are independent 

of path taken in phase-space to arrive at their asymmetrical conformations in space, assuming no phase 

transition were crossed. 

A comparison between the results of Tables 2 and 3 is presented in Table 4 where average values and 

their associated coefficients of variance (COV) from Tables 2 and 3 are reported.  It can be seen in Table 

4 that regardless of whether the H phase deformation is started from the hard-shell adhesive (Adh) or 

non-adhesive (Noa) hard-shell configurations [1], the percolation threshold (ρc) drops from 0.243 to 0.143 

(Noa conditions), or from 0.297 to 0.153 (Adh conditions) as the radius of gyration (Rg) increases from a 

value associated with perfectly spherical (Rg = 0.435σ) to values of Rg between 0.591σ to 0.594σ 

associated with clusters of small asymmetrical spheroids (Fig. 10).   

In Fig. 11 a representative histogram of Rg values is shown for a case of no affinity (Noa) during 

placement of particles as they are at completion of the hard-shell GEL stage [1], followed by no affinity 

(A00) simulation conditions during time evolution of the deformable clusters for this study.  
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Table 4.  Comparison of Tables 2 and 3. 

 

 

 

Fig. 10.  Cube clusters morph into spheroids. 
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Fig. 11.   Histogram of radius of gyration (Rg) under Noa followed by A00 conditions as a function of 

cluster deformation represented by its Rg. 

 

Per Table 4, it can be seen that the H phase coordination number CNHH has values between 6 and 7, 

in approximate agreement with previous studies about coordination of random close packed spheres 

[34,36,37].  Also per Table 4, when H phase particle deformation is allowed, H-H coordination increases 

from a value less than 2 (CNHH hard-shell model) to values in the range 8 to 9 (CNHH-M clusters 

model).  This indicates that the number of paths for electrical signal across the H phase has increased 

dramatically, and this increase in electrical percolation paths explains the reduction of the H-H electrical 

percolation reported in Table 4, column 2.  It appears even mild deformation of the conductive H phase 

from spherical particles causes a large drop in the percolation threshold (ρc).  Also per Table 4, CNHE 

(c.n. between the H and E phases) increases from approximately 4 to values in the range 16 to 17.  This 

indicates that at least a fourfold increase in mechanical contact between the H and E phases has occurred 

while the H particles are mildly deformed.  This is an encouraging finding as the optimum ME composite 

would be one that maximizes the H-E mechanical contact while minimizing H-H electrical percolation.  

In fact, for a continuous particle distribution during a physical experiment, the mechanical contact would 

generally be expected to increase by several orders of magnitude. 
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6.2 Deformation of E Phase around Rigid H Phase 
This section addresses what happens if the E particles deform around rigid, spherical H spheres.  The 

Scher-Zallen [39] invariant percolation threshold for a conducting phase (H) of spheres immersed in 

equally sized insulating (E) spheres is ρ = 0.154.  Barbero and Bedard [1] found that decreasing the size 

of the E phase until RH/RE=4 could increase the percolation threshold to ρc = 0.297 or 0.243 depending on 

whether H-E particle affinity (Adh) is considered or not, respectively.  In other words, the highest 

percolation threshold was found to be at 29.7% volume fraction of H phase.  Therefore, the E phase 

constitutes the majority of the ME composite’s volume, and the E particles are much smaller than the H 

particles (RH/RE=4). Thus, for modeling deformation of the E phase, it is not necessary to collect the E 

particles into small clusters.  Specifically, we assume that immersing larger spherical H particles in a 

random close packed continuum of smaller E particles is equivalent to deforming E particles to fill the 

interstitial space between rigid H particles. That means that simulation with H and E hard-shell spheres 

using the methodology presented  in [1] is able to reveal the effects of deformation of the E phase, as 

depicted, for example in Fig. 12.  

Increase of percolation threshold ρc with decreasing size of E particles is apparent in Fig. 12.  

However, somewhere between RH/RE = 3 to 4, the percolation threshold tapers off for the case of no 

affinity (Noa) between the H and E phases, and it decreases or dips for the case where the H and E phases 

experience short range affinity (Adh).  In light of this dip, we postulate that the increase in the percolation 

threshold (ρc) is due to the smaller particles moving to interstitial space between the H particles and hence 

separating the H particles away from each other.   However, when the E phase particles become too 

small, they can no longer push the H particles apart.  In addition, the dip in the linear relationship between 

ρc and RH/RE between 3 and 4 seen in Fig. 12 becomes more pronounced when there is H-E affinity 

(Adh) between H and E particles.  This is because when two large H particles are both attracted to the 

same E particle, they are effectively attracted to each other, decreasing the distance between H phase 

particles, and thus decreasing the percolation threshold.   
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The pair-wise Lennard-Jones potential used in this model does not have any friction or lateral force 

components, so this dip in the trend of increasing percolation threshold (ρc) versus RH/RE=1,2,3,4 shown 

in Fig. 12 may not be so severe in practice because actual particles will experience frictional forces that 

keep them from being pushed out of the way.   In the case where there is H-E particle affinity (Adh), 

because the L-J potential does not have any lateral force components, the E particles in this simulation 

can be pushed into interstitial spaces between H particles and act as attractors within the H phase, closing 

the distances between H particles and lowering the percolation threshold.  

 

Fig. 12.  Percolation threshold when both H and E phases are modeled as hard-shell spheres. 
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Fig. 13.  CNHE1-4 H-E inter-phase coordination number of hard-shell model. 

 

As previously mentioned, the coordination number c.n. is an indicator of mechanical contact because 

the higher the c.n., the larger the numbers of contacts between particles and thus the more efficient the 

energy transfer is.  The predicted relationship between interphase ME mechanical contact (CNHE) and 

relative particle size RH/RE is shown in Fig. 13.  When the relative size of the E particles decreases with 

respect to the H particles the number of bonds between the E and H particles (CNHE) increases 

quadratically.  We propose a simple qualitative parametric model (Fig. 14) that purports that  mechanical 

contact between H and E particles is of the same order of magnitude as the ratio of the surface area of a 

larger sphere centered at the H particle intersecting the cross sectional area of the smaller E particles at 

the E particle’s center.   This simple models results in the following equation: 
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Fig. 14.  Two equal size particles in contact (left), and two unequal sized particles in contact (right). 
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where D is the diameter of the H particles and x = RH/RE is the ratio of the H to E particle radii.  Fig. 14 

illustrates the derivation of (8) where the c.n. × intersect area of the small sphere = the area of the larger 

sphere at distance RH+RE.  

 

 

Fig. 15.  Polynomial curve fit of [44] Table 2. 

Liang ([40] Table 2) produced a table of coordination numbers for a bi-disperse population of spheres 

as a function of relative particle size.  Curve fitting their results of coordination versus relative particle 

size shows a good fit for a quadratic polynomial (Fig. 15) thus supporting the simple model proposed in 

(8) representing the results of this study in Fig. 13. 



Antoine Joseph Bedard Jr. and Ever J. Barbero. Electrical percolation threshold of magnetostrictive 
inclusions in a piezoelectric matrix under simulated sintering conditions. Computational Particle 
Mechanics (2018) 5:593-605. DOI: 10.1007/s40571-018-0192-9 

 

Page 24 of 29 

 

7. Conclusions 
In conclusion, we observed that the deformation of the electrically conducting, magnetostrictive H 

phase particles that occurs in practice due to sintering is likely to lower the percolation threshold in bi-

disperse ME composites because the deformed particles will have more contact points and higher 

coordination number. Hence, any electric signal will have a greater number of paths to travel across a 

magnetoelectric composite, thus diminishing the ME effect.   

We also observed that for spherical particles the inter-phase H-E coordination number (CNHE) 

associated with mechanical coupling between phases is likely to increase quadratically as the 

piezoelectric E phase particles deform during sintering.  However, allowing the E phase particles to 

deform during sintering may counteract the ME enhancing effect of reducing E-phase relative particle 

size by lowering the percolation threshold.  The simulation data suggest that the best way to raise the 

electrical percolation threshold ρc while maintaining a maximum mechanical coupling between the E and 

H phases is to use piezoelectric E particles at (3.5)-1 the size of magnetostrictive H particles and 

promoting E-H particle affinity.  Furthermore, during sintering it seems better to promote deformation of 

the E phase than deformation of the H phase in order to maximize mechanical coupling. 

We also observed that the radius of gyration (Rg), which characterizes particle deformation, on 

average grows from Rg = 0.435 for perfectly spherical particles to an average value of Rg = 0.5925 in all 

cases for a fixed simulation time of 3800 time steps, with a narrow spread for the primary peak in Fig. 11.  

Therefore, not only do all simulations stop at less than 25% mass transport away from the center of mass 

of each cluster, but they also arrive at a precise relative increase in radius of gyration Rg of (0.5925-

0.435/0.435) ×100 = 36.2%, for a fixed simulation run time of 3800 time steps, thus implying a 

relationship between sintering time and extent of particle deformation.  

 Regarding pre-sintering particle mixing, numerous studies including [41–44] report phase 

segregation when mixing particles of different sizes or mass, which is highly deleterious to the 

percolation threshold.  Therefore, it is required that the H and E phases are well mixed prior to sintering, 
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as documented in [1].  In addition, we confirmed the results of  [34,37] and others showing that the 

coordination number for random close packed hard-shell spheres is approximately between 5.9 and 6.7. 

Furthermore, we propose a simplified qualitative model that shows that the coordination number between 

bi-disperse spheres increases quadratically with a decrease in relative particles size (RH/RE) between the 

two species.   
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Appendix A.  Programs used for hard-shell modeling   

 

The following list illustrates the order in which the programs are to be run in order to produce the 

results reported in [1] for hard shells.  All programs in this appendix were run on ASUS 2.53 GHz 64 bit 

Windows 7 Home Premium 2009. References [45,46] provide background for these programs. LAMMPS 

[22] was run on the West Virginia University High Performance Cluster under UNIX operating system. 

All programs and scripts are provided as supplementary material in the publisher’s website.  

 

Program   Purpose 

1. pmpe4.c  Produce set of input coordinates for Lammps for RH/RE=4. 

2. Lammps_LT_MIX.txt Run Lammps.  See appendix C for MIX script 

3. cvt_dmp_inp2.pl Convert output Lammps dump file to input data file. 

4. Lammps_LT_EQU.txt Run Lammps. See appendix C for EQU script 

5. cvt_dmp_inp3.pl Convert  output dump file to input data file. 

6. Lammps_LT_GEL.txt Run Lammps. See appendix C for GEL script 

7. filt_coords_PM-2.pl Strip unnecessary information from dump file. 

8. filt_coords_PE-2.pl Strip unnecessary information from dump file. 

9. filt_coords_PM-R.pl Strip unnecessary information from dump file. 

10. dist3_Rm  Create file of bond pairs. Rm= connection radius 

11. zap2_Rm  Recurse through bond pairs and evaluate percolation. 

12. CNHH_Rm  Calculate c.n. for all H particles with respect to other H particles. 

13. pa64    Calculate local packing fraction 
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Appendix B.  Programs used for particle deformation 

 

The following list represents the order in which the programs in this appendix are to be run to 

produce the results for deformable H and E phase particles simulations reported in this paper.  All 

programs in this appendix were run on a model ASUS 2.53 GHZ running 64 bit Windows 7 Home 

Premium 2009. References [45,46] provide background for these programs.  LAMMPS [22] was run on 

the West Virginia University High Performance Cluster running a UNIX operating system. All programs 

and scripts are provided as supplementary materials in the publisher’s website. 

 

Program    Purpose 

1. filt_coords_PM-2.pl  Strip unnecessary information from data file. See App. A. 

2. filt_coords_PE-2.pl  Strip unnecessary information from data file. See App. A.  

3. glob3_p   Replace all H coordinates with 125 point cubes, where p is the 

packing fraction defined as p= NH / (NH+NE) 

4. Lammps_LT_input_MIX7.txt Run Lammps.  See MIX7 script in Appendix C. 

5. Lammps_LT_input_redump.txt Remove all but coordinates from single timestep. 

6. filt_coords_PM-mol-R.pl Strip away unnecessary information from data file. 

7. filt_coords_PE-mol.pl  Strip away unnecessary information from data file. 

8. Rg3.pl_ts_p   Compute table of Rg values for each cluster.  

9. dist9M_p   Create file of bond pairs between molecules 

10. ZapM_p   Recurse through bond pairs and test for percolation 

11. CNHH-M   Compute c.n. between H phase clusters 

12. CNHE-M   Compute c.n. between H and E hard-shell spheres 

 

Appendix C. Lammps scripts 

 

The following are input scripts used by Lammps [22] for this study. The scripts need to be adjusted 

and customized depending on particles size and volume fraction of particles. All programs and scripts are 

provided as supplementary materials in the publisher’s website. 

 

Script     Purpose 

1. RUNS8_MIX_R11_B   MIX stage for Noa and Adh conditions for hard-shell spheres 

[1]. 

2. RUNS7_R11_Adh_B64 EQU stage under Noa conditions for hard-shell spheres [1]. 

3. RUNS7_R11_NoA_B64  GEL stage under Noa conditions for hard-shell spheres [1]. 

4. MIX7_SNT_GLOB_G16  Simulate sintering under A00 and Noa conditions involving 

particle deformation (this paper).  
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